接地とアースとグラウンド

電気工事で行う接地は、次の4種類です。

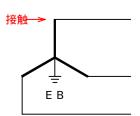
600Vを超え 7,000V以下 7,000Vを超える

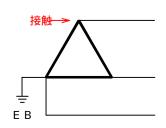
A 種接地工事	10以下 直径2.6mm以上の軟銅線	高圧または特別高圧の機器の 鉄台および金属製外箱
B種接地工事	変圧器の 高圧側または特別高圧側の電路の 1線地絡電流のアンペア数で 150(状況により300,600) を除した値に等しいオーム以下 注1 直径4mm以上の軟銅線	高圧または特別高圧電路と低圧電路を 結合する変圧器において 高圧等と低圧の混触の恐れがある場合
C種接地工事	10 以下 注2 直径1.6mm以上の軟銅線	300Vを超える低圧機器の 鉄台 金属性外箱 金属管 など
D種接地工事	100 以下 注2 直径1.6mm以上の軟銅線	300V以下の低圧機器の 鉄台 金属性外箱 金属管 など

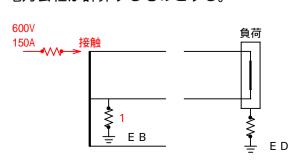
- 注1 高圧電路または35,000以下の特別高圧電路の場合で
 - 1秒を超え2秒以内に自動的に遮断する装置を設ける時は 300
 - 1秒以内に自動的に遮断する装置を設ける時は 600
- 注2 漏電遮断機などの設置により、0.5秒以内に地絡を生じた電路を遮断できれば500

A種C種D種は、普通のグラウンドです。

冷蔵庫や洗濯機や電子レンジが故障 (漏電や地絡) しても、感電しないようにするためのものです。 使用する電圧によって、流れる電流が違いますので、3つのクラスに分けられています。


ややこしいのはB種接地です。


私は、次のように考えますが、間違っているかも知れません。


- 600 V を超える電圧を
- 400V 200V 100Vの低圧に変換するトランスは
- 1次側巻き線と2次側巻き線が接触した場合に
- 2次側に流れてしまう1次側高電圧による2次側の被害を防ぐため
- 2次側の中性点(不可能な場合は端点)を接地しなければならない。

接地抵抗は、障害が発生した場合の2次側電圧が150V以下となる値とする。

なお、地絡電流は配電線の線路抵抗に依るので、電力会社が計算するものとする。

接地 アース グラウンド は、同じものです。 が、なんとなくニュアンスは違うような気がします。

接地 接地工事は聞きますが、グラウンド工事アース工事は、あまり聞きません。

接地板そのもの、および接地板を埋設する作業を、意味しているように思います。

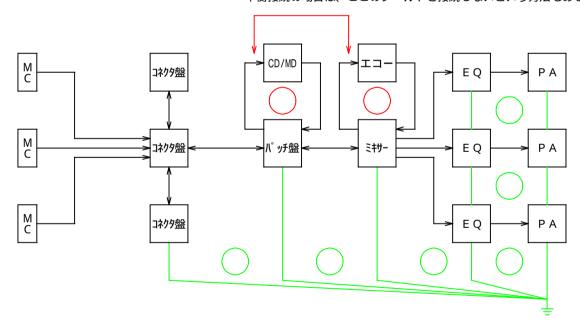
シンボルで言えば 🚽 です。

グラウンド フレームグラウンド グラウンドリフト は良く聞きますが、

シグナルグラウンド回路グラウンドは、あまり聞きません。

機械や機器を、接地端子に接続する、と言うような意味が強い気がします。

アース フレームアース 回路アース 1点アースと言う言葉もあります。


アースする アースに落とす アースを切る 等とも言います。

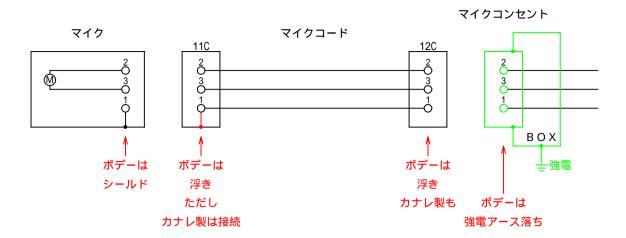
これらには、安全のために接地すると言う意味合いは薄く、

信号を流すためのノイズを減らすためのアース、と言う意味が濃いように思います。

音響機器のアースとグラウンドループ

平衡接続の場合は、ここのシールドを接続しないという方法もある。

音響設備は1点アースが基本です。

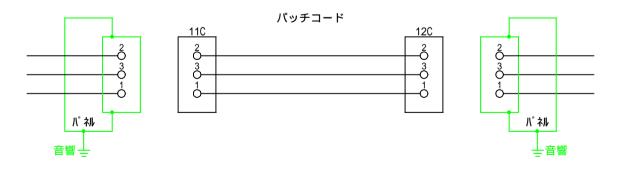

そこで、緑色の配線をし、各ユニットのFG端子に接続します。

ところが、それを行うと、緑丸のループが出来てしまいます。

そこで、このループを出来るだけ小さくするために、信号ケーブルと同じルートで配線します。

また、どうしても、赤丸のループも出来てしまいます。 このループを出来るだけ小さくするために、入力と出力のケーブルを、近づけて配線します。

マイクコードとマイクコンセントのボデーアース



これも判らないことのひとつ。やはり、アースは難しい。 私は1番ピンをアースしないので、その理由。

マイクコンセントのボックスは、強電アースに落ちているので、 コネクタボデーも、強電アースに落ちている。 そのため、1番ピンをボデーに接続すると、強電アースが1番ピンにつながってしまう。 よって、1番ピンは、ボデーに接続しない。

マイクコードの1番ピンをコネクタボデーに接続すると、 コネクタボデーが金属に触れた時に、強電アースが1番ピンにつながってしまう。 よって、1番ピンは、ボデーに接続しない。

コネクタ盤とパッチ盤のボデーアース

コネクタパネルは、音響専用アースに接続されています。 よって、コネクタボデーは音響アースに落ちています。 しかし、1番ピンはコネクタボデーに接続されていません。 1番ピンは、ミキサーで、回路アースに接続されます。 パッチコードは、ボデーアースされていません。(カナレ製も同じです。) しかし、パッチすると、ボデーアースがとられます。